Using Machine Analysis to Make Elementary Students’ Mathematical Thinking Visible

Introduction

Visual representations help students make sense of mathematical ideas. When students create their own representations, they demonstrate their thinking in a visible manner.

The INK-12 project has been studying elementary math students’ use of visual representations.

Goals

Understand student use of representations in multiplication and division.

Provide feedback to teachers about students’ thinking.

Machine analysis provides critical information not always visible in the final work.

Machine Analysis Routines

Based on a human coding scheme, analysis routines recognize characteristics of visual representations, use patterns, and implied mathematical thinking.

1. **Record Interaction History**
 - Record a sequence of low-level actions, e.g., adding ink strokes or objects.

2. **Create Semantic Events**
 - Identify object attributes, cluster and add semantics to ink strokes, identify abstract actions resembling human history codes.
 - Resulting semantic events describe process.

3. **Analyze Semantic Events**
 - Analyze semantic events to recognize salient use patterns and tag work with relevant analysis codes.

Dataset

Dataset is 8,470 pages of student multiplication and work from a 5-week trial with a class of 22 3rd graders; each page has a replayable history.

A subset, 264 pages, was used as a basis for the human coding scheme and machine analysis routines: 12 final assessment problems for each of 22 students.

Assessment Notebook

Representation use (on 264 pgs):
- Array: 69
- Bins: 14
- Number line: 133
- No representation: 78

Other analysis:
- Multiple representations: 21
- Answer before representation: 54
- Answer changed after representation: 17

Robust machine analysis routines will enable analysis of the 8,470 pages of work in our data set, furthering our knowledge of how students’ mathematical thinking can be made visible.